Swarms of drones have gotten a lot of time in the spotlight lately, mostly for their use in potential military operations. The U.S. military is testing out swarm operations in simulations, while the British Army is using live drones operating in swarms during actual training operations. Other militaries are also interested in deploying swarms.
One of the biggest advantages a swarm of drones has when performing military operations is its resiliency. If a swarm enters combat and several individual drones get shot down or otherwise incapacitated, it really doesn’t reduce the combat effectiveness of the swarm, nor the tactics that it uses. A swarm of 550 drones is just about as powerful and flexible as a swarm of 600, even if the former has “lost” almost 10% of its initial strength.
And while that is noteworthy, it’s probably the least interesting aspect of swarms. What makes them really amazing in both military and civilian applications is their so-called swarm intelligence, a term first coined by Gerardo Beni and Jing Wang in 1989 when describing the potential for cellular robotic systems.
Swarm intelligence can enable drones to act very similar to how swarms of insects behave in nature. Take bees, for example. Individual bees each have their own intelligence and jobs within a colony. But when a bee finds something good, like a patch of blooming flowers, it will report that information back to other bees that happen to be nearby when it flies back to the colony. Interestingly enough, bees generally communicate the distance, direction and elevation of the discovered resource, as well as any dangers that might exist along the way. These are exactly the kinds of things that an artificial swarm of flying robots would need to know about a target or a potential point of interest. The bees that receive the message can then either go off to gather juicy pollen from those newly discovered flowers, or share the information with more nearby bees until it becomes well-known within the swarm.
Continue reading: https://www.nextgov.com/ideas/2021/09/swarms-may-offer-next-level-artificial-intelligence/185177/
One of the biggest advantages a swarm of drones has when performing military operations is its resiliency. If a swarm enters combat and several individual drones get shot down or otherwise incapacitated, it really doesn’t reduce the combat effectiveness of the swarm, nor the tactics that it uses. A swarm of 550 drones is just about as powerful and flexible as a swarm of 600, even if the former has “lost” almost 10% of its initial strength.
And while that is noteworthy, it’s probably the least interesting aspect of swarms. What makes them really amazing in both military and civilian applications is their so-called swarm intelligence, a term first coined by Gerardo Beni and Jing Wang in 1989 when describing the potential for cellular robotic systems.
Swarm intelligence can enable drones to act very similar to how swarms of insects behave in nature. Take bees, for example. Individual bees each have their own intelligence and jobs within a colony. But when a bee finds something good, like a patch of blooming flowers, it will report that information back to other bees that happen to be nearby when it flies back to the colony. Interestingly enough, bees generally communicate the distance, direction and elevation of the discovered resource, as well as any dangers that might exist along the way. These are exactly the kinds of things that an artificial swarm of flying robots would need to know about a target or a potential point of interest. The bees that receive the message can then either go off to gather juicy pollen from those newly discovered flowers, or share the information with more nearby bees until it becomes well-known within the swarm.
Continue reading: https://www.nextgov.com/ideas/2021/09/swarms-may-offer-next-level-artificial-intelligence/185177/