Brianna White

Administrator
Staff member
Jul 30, 2019
4,656
3,456
A new technique compares the reasoning of a machine-learning model to that of a human, so the user can see patterns in the model’s behavior.
In machine learning, understanding why a model makes certain decisions is often just as important as whether those decisions are correct. For instance, a machine-learning model might correctly predict that a skin lesion is cancerous, but it could have done so using an unrelated blip on a clinical photo.
While tools exist to help experts make sense of a model’s reasoning, often these methods only provide insights on one decision at a time, and each must be manually evaluated. Models are commonly trained using millions of data inputs, making it almost impossible for a human to evaluate enough decisions to identify patterns.
Now, researchers at MIT and IBM Research have created a method that enables a user to aggregate, sort, and rank these individual explanations to rapidly analyze a machine-learning model’s behavior. Their technique, called Shared Interest, incorporates quantifiable metrics that compare how well a model’s reasoning matches that of a human.
Shared Interest could help a user easily uncover concerning trends in a model’s decision-making — for example, perhaps the model often becomes confused by distracting, irrelevant features, like background objects in photos. Aggregating these insights could help the user quickly and quantitatively determine whether a model is trustworthy and ready to be deployed in a real-world situation.
Continue reading: https://scitechdaily.com/do-humans-and-ai-think-alike/
 

Attachments

  • p0007562.m07209.machine_learning_model_reasoning.jpg
    p0007562.m07209.machine_learning_model_reasoning.jpg
    503.5 KB · Views: 43
  • Like
Reactions: Brianna White