Brianna White

Administrator
Staff member
Jul 30, 2019
4,656
3,456
Artificial intelligence (AI) and machine learning (ML) are terms that are heard everywhere across the IT security landscape today, as organizations and attackers are both seeking to leverage these advancements in service of their goals. For the bad actors, it’s about breaking down defenses and finding vulnerabilities faster. But what value can AI and ML offer when you’re working to secure an organization?
It would be great to say that these technologies are an end to themselves for your cybersecurity and that merely adopting them means your organization is fully protected. But it’s not that simple. Not all uses of AI and ML are created equal. And—spoiler alert—it’s not all about using the latest algorithms.
However, in order to meet the challenges and speed of today’s threat landscape, AI and ML are vital parts of a holistic security solution and should be focused on the ultimate outcome of preventing every type of attack you can and responding as fast as possible to the ones you can’t.
AI alone is not an answer
Artificial intelligence itself is not a differentiator for security. In fact, there are many different AI frameworks and models in common usage today. Generally speaking, those frameworks come from academia and are open-source, public implementations available to everyone. So, it’s not the AI framework that makes a difference. What differentiates is how the AI is used and what data is available for AI to learn from.
Continue reading: https://www.cio.com/article/304486/beyond-the-hype-understanding-the-true-value-of-ai-ml-in-security-environments.html
 

Attachments

  • p0006804.m06451.picture1_3.png
    p0006804.m06451.picture1_3.png
    624.3 KB · Views: 46